
 S T A C K

Module 1 : MongoDB

Module 2 : Express.js

Module 3 : Angular

Module 4 : Node.js

MERN Stack: A JavaScript Full Stack
Solution

MERN stack is a popular choice for building dynamic web applications. It's a

collection of JavaScript-based technologies that work together to handle different

layers of the application.

Components of MERN Stack

•MongoDB: A NoSQL database that uses flexible JSON-like documents to

store data.

•Express.js: A Node.js framework for building web applications and APIs.

•React: A JavaScript library for building user interfaces.

•Node.js: A JavaScript runtime environment that allows developers to

execute JavaScript code on the server-side.

How MERN Stack Works

1.Client-Side (React): The user interacts with the application's user interface

built using React.

2.Data Interaction (React and Node.js): React communicates with the server-

side using HTTP requests to fetch or send data.

3.Server-Side (Node.js and Express.js): Node.js handles the server-side logic,

and Express.js provides the framework for routing and handling requests.

4.Database (MongoDB): MongoDB stores and retrieves data as JSON-like

documents.

Benefits of Using MERN Stack

•JavaScript Unification: Consistent use of JavaScript across the entire stack simplifies

development.

•Rapid Development: The MERN stack offers a streamlined development process due to

its cohesive nature.

•Scalability: Both MongoDB and Node.js are designed for handling high traffic and large

datasets.

•Open Source: All components of the MERN stack are open-source, providing a large

community and extensive support.

•JSON-Based: Data consistency between the client and server due to the use of JSON.

When to Use MERN Stack

MERN stack is well-suited for building:

•Real-time applications (e.g., chat apps, online gaming)

•Single-page applications (SPAs)

•High-traffic web applications

•Cloud-based applications

•Mobile app backends

Module 1: MongoDB

Introduction to NoSQL Databases

•Definition:NoSQL databases provide a way to store and retrieve data that is

modeled in a way other than the tabular relations used in relational databases

(RDBMS).

•Types of NoSQL databases: Document, Key-Value, Column-Family, and

Graph databases.

•Advantages: Scalability, flexibility, and handling unstructured data.

MongoDB Basics

• Installation and Setup:Install MongoDB Community Server on your local

machine.

• Start the MongoDB server using the mongod command.

• Access the MongoDB shell using mongo.

CRUD Operations:

• Create: db.collection.insertOne({name: "Alice", age: 25})

• Read: db.collection.find({name: "Alice"})

• Update: db.collection.updateOne({name: "Alice"}, {$set: {age: 26}})

• Delete: db.collection.deleteOne({name: "Alice"})

Collections and Documents:

• Collection: Analogous to a table in RDBMS.

• Document: A record in a collection, stored in BSON (Binary JSON) format.

Example:

db.students.insertOne({
 name: "John Doe",
 age: 22,
 courses: ["Math", "Physics"]
});

Advanced MongoDB
Schema Design:

•Schema-less design allows for flexible data models.

•Use embedded documents for one-to-many relationships.

Indexing:

• Improves query performance.

• Example: db.students.createIndex({name: 1})

Aggregation:

•Perform complex data manipulations and transformations.

Example
 db.students.aggregate([
 { $match: { age: { $gt: 20 } } },
 { $group: { _id: "$courses", count: { $sum: 1 } } }
]);

Module 2: Express.js
Introduction to Express.js

Role in MEAN Stack:

• Express.js is a minimal and flexible Node.js web application framework that
provides robust features for web and mobile applications.

• Facilitates routing, middleware support, and integration with databases.

Setting Up Express:

• Initialize a new Node.js project: npm init
• Install Express: npm install express
• Basic server setup:

const express = require('express');
const app = express();
const port = 3000;

app.get('/', (req, res) => {
 res.send('Hello World!');
});
app.listen(port, () => {
 console.log(`Server running at http://localhost:${port}/`);
});

Routing in Express.js
•Routing Basics:

• Define routes to handle client requests.
• Example

app.get('/students', (req, res) => {
 res.send('List of students');
 });

 app.post('/students', (req, res) => {
 res.send('Create a new student');
 });

Middleware:
•Functions that execute during the lifecycle of a request to the server.

Example

app.use(express.json()); // Middleware to parse JSON bodies

Error Handling:
Centralized error handling using middleware.
Example

app.use((err, req, res, next) => {
 res.status(500).send({ error: err.message });
 });

Template Engines
Using Pug:
Install Pug: npm install pug
Set up Pug as the view engine:

app.set('view engine', 'pug');
app.get('/profile', (req, res) => {
 res.render('profile', { name: 'John Doe' });
});

Building Dynamic Web Pages:

Use Pug templates to generate HTML with dynamic data.

Example

//- profile.pug
h1 Profile Page
p Name: #{name}

API Development
•RESTful API Design:

• Design principles: Statelessness, Uniform Interface, Resource-based URLs.
• Example: Implementing CRUD API for students

app.get('/students/:id', (req, res) => {
 // Fetch student by ID from database
 });
 app.post('/students', (req, res) => {
 // Create a new student record
 });
 app.put('/students/:id', (req, res) => {
 // Update student record
 });
 app.delete('/students/:id', (req, res) => {
 // Delete student record
 });

Module 3 : React

Components
•Definition:

• Components are the building blocks of a React application. They can be
thought of as reusable UI elements that are independent and self-
contained.

• React components can be defined as either functional components
(stateless) or class components (stateful).

import React from 'react';
function Welcome(props) {
 return <h1>Hello, {props.name}</h1>;
}
export default Welcome;

Explanation: The Welcome component is a simple functional component that
receives props and returns a JSX element displaying the name passed as a prop.

Example: Class Component

import React, { Component } from 'react';

class Welcome extends Component {
 render() {
 return <h1>Hello, {this.props.name}</h1>;
 }
}

export default Welcome;

Explanation: The Welcome component is defined as a class, which extends
React.Component. It has a render() method that returns JSX.

2. JSX (JavaScript XML)
•Definition:

• JSX is a syntax extension of JavaScript that looks similar to HTML. It is
used in React to describe the UI.

• JSX is not required to use React, but it makes the code more readable and
easier to write.

•Example:

 const element = <h1>Hello, world!</h1>;

Explanation: This JSX code represents an HTML h1 element that will render
"Hello, world!" on the page.

3. Props
•Definition:

• Props (short for "properties") are read-only inputs passed to components.
They allow data to be passed from one component to another, often from a
parent to a child component.

•Example: Passing Props
function App() {
 return <Welcome name="Alice" />;
 }

4. StateDefinition:
State is a built-in object used to contain data or information about the
component. Unlike props, state is local to the component and can be changed
using the setState() method.Example: Using State in a Class Component

import React, { Component } from 'react';
class Clock extends Component {
 constructor(props) {
 super(props);
 this.state = { date: new Date() };
 }
 componentDidMount() {
 this.timerID = setInterval(() => this.tick(), 1000);
 }
 componentWillUnmount() {
 clearInterval(this.timerID);
 }
 tick() {
 this.setState({
 date: new Date(),
 });
 }
 render() {
 return (
 <div>
 <h1>Hello, world!</h1>
 <h2>It is {this.state.date.toLocaleTimeString()}.</h2>
 </div>
);
 } } export default Clock;

5. Handling Events
•Definition:

• Handling events in React is very similar to handling events in DOM
elements, but with some syntax differences. React events are named using
camelCase, and you pass a function as the event handler.

function Toggle() {
 const [isOn, setIsOn] = React.useState(true);

 function handleClick() {
 setIsOn(!isOn);
 }

 return (
 <button onClick={handleClick}>
 {isOn ? 'ON' : 'OFF'}
 </button>
);
 }

 export default Toggle;

6. Conditional Rendering
•Definition:

• In React, you can conditionally render elements based on the state or props
of a component.

function Greeting(props) {
 const isLoggedIn = props.isLoggedIn;
 if (isLoggedIn) {
 return <h1>Welcome back!</h1>;
 }
 return <h1>Please sign up.</h1>;
 }

 export default Greeting;

Explanation: The Greeting component renders different messages based on the
value of isLoggedIn.

7. Lists and Keys
•Definition:

• Lists are used to display a series of similar items. Each item in a list needs a
unique "key" prop to help React identify which items have changed, been
added, or removed.

•Example: Rendering a List

function NumberList(props) {
 const numbers = props.numbers;
 const listItems = numbers.map((number) =>
 <li key={number.toString()}>{number}
);
 return {listItems};
 }

 export default NumberList;

8. Forms
•Definition:

• Forms in React are similar to HTML forms but with additional handling
of user input using state.

class NameForm extends React.Component {
 constructor(props) {
 super(props);
 this.state = { value: '' };

 this.handleChange = this.handleChange.bind(this);
 this.handleSubmit = this.handleSubmit.bind(this);
 }

 handleChange(event) {
 this.setState({ value: event.target.value });
 }

 handleSubmit(event) {
 alert('A name was submitted: ' + this.state.value);
 event.preventDefault();
 }

render() {
 return (
 <form onSubmit={this.handleSubmit}>
 <label>
 Name:
 <input type="text" value={this.state.value}
onChange={this.handleChange} />
 </label>
 <input type="submit

" value="Submit" />
 </form>
);
 }
 }

 export default NameForm;

Module 4 : Node.js

Introduction to Node.js

Role in MEAN Stack:

• Node.js is a JavaScript runtime built on Chrome's V8 engine, allowing

JavaScript to be used for server-side scripting.

• It’s non-blocking, event-driven architecture makes it suitable for I/O-

heavy applications.

Setting Up Node.js:

• Install Node.js from nodejs.org.

• Verify installation: node -v and npm -v.

Core Modules and Features

File System (fs):

• Read and write files asynchronously.

https://nodejs.org/

const fs = require('fs');
fs.readFile('example.txt', 'utf8', (err, data) => {
 if (err) throw err;
 console.log(data);
});

Networking with HTTP:
Create a basic HTTP server.

const http = require('http');
const server = http.createServer((req, res) => {
 res.statusCode = 200;
 res.setHeader('Content-Type', 'text/plain');
 res.end('Hello, World!\n');
});

server.listen(3000, () => {
 console.log('Server running at http://localhost:3000/');
});

Working with Databases:

Use mongoose to interact with MongoDB from Node.js.

const mongoose = require('mongoose');
mongoose.connect('mongodb://localhost/mydatabase', {
useNewUrlParser: true });

. . . THANK YOU . . .

